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Abstract

The sparseness in seismic data has been successfully
used to achieve many improvements in different areas
such as acquisition, regularization, filtering, and imag-
ing. The search for a sparse description for a given
practical seismic (linear) problem is often conducted
via the so called Iteratively Reweighted Least-Squares
Inversion with an adaptive choice of a diagonal matrix,
computed with a statistically derived prescription. In
this paper, we discuss the role of this matrix in the in-
version and propose an alternative heuristic formula
which allows one to more easily constrain the solu-
tion to physical expectations and is likely to improve
sparseness and accelerate convergence.

Introduction and Review

Linear inversion problems are very common in geophysical
applications. Usually, a set of representative vectors are
combined in a weighted way so as to fit a set of measure-
ments. Mathematically, it is to say A~x = ~b, where A is a
matrix with model vectors in its columns, ~x is a vector of
weights to be determined, and ~b is the data vector. The
choice of the model vectors is generally guided by physical
demands and is not committed to fill simple mathematical
properties like completeness or uniqueness of the solution
~x. For instance, in an irregular discrete Fourier transform
(IDFT), columns of A exhibits the values of sinusoidal func-
tions taken at unevenly chosen positions. Thus, the matrix
A for IDFT departs a lot from the usual discrete Fourier
transform. A may not be invertible and the solution ~x may
not be unique.

Least square (L2) error (‖A~x−~b‖2) is an option to de-
fine ~x for overdetermined problems. Developing a linear
problem to L2 minimum error norm leads to equations like
AHA~x = AH~b (1). Underdetermined and/or ill-posed prob-
lems are often handled with a dumped version of the L2
error norm (here called the Dumped Least Square equa-
tion or DLSE) as (AHA + λ I)~x = AH~b where λ is ideally
chosen real, positive, and small enough to allow for a solu-
tion that keeps the error as small as possible, and I is the
identity. At this point, it might be noticed that extending the
original linear problem as,[

A√
λ I

]
~x =

[
~b
~0

]
(1)

1H stands for Hermitian, we assume complex valued functions.

where ~0 is a null vector, the Dumped Least Square equa-
tion remains unchanged. The least square error turns out

to be
∥∥∥A~x−~b

∥∥∥2
+ λ ‖~x‖2, which shows that this formulation

will demand solutions of smaller L2 norm. The columns of
the matrix

√
λ I forms a linearly independent set of vectors.

Consequently, the extended matrix (AT ,
√

λ I)T , on the left
hand side of equation (1) also has a set of linearly inde-
pendent vectors as its columns. This is why the DLSE is
invertible.

The Dumped Least Squares solution is unique but may not
match all practical needs. It would be helpful to add extra
constraints, and have a yet unique but also appropriate so-
lution. In many applications, mitigating redundancy is sat-
isfactory. Thus, one should look for the most sparse solu-
tion. Among many authors, Sacchi (1997) have a compre-
hensive analysis of how to impose sparseness on a linear
problem. Based on assumed probability density functions
(PDF) for the error and data, it consists in giving λ a de-
pendence on the solution ~x. This turns the linear problem
into a nonlinear one and an iterative method is proposed
to find the best ~x. The DLSE (although the error might no
longer be the least) assumes the form,

(AHA+ΛΛΛ)~x = AH~b (2)

where ΛΛΛ is a diagonal matrix with elements generically
given as Λi j = δi jλi(xi), δ is the Kronecker delta and now
λ stands for a function determined to honor a desired PDF.
For instance, in a Gaussian distribution of errors and data
and Cauchy distribution of weights, one has,

λi(xi) =
ε

1+ x2
i

σ 2
x

(3)

with σ2
x the variance of a given solution and ε a small

parameter used to keep the original linear problem error
small.

Now, the error or total residue is written as,∥∥∥A~x−~b
∥∥∥2

+ ∑
i

λi x2
i (4)

explicitly associating the total residue 2 to the values of λi
and the corresponding weights xi. Manipulation of λi val-
ues seems to be the key for guiding the iterative process
to expected goals. A varying λi will likely yield a solution
that is no longer minimum in a L2 norm sense. This will
be clear for a simple linear problem with dimension three
where the L2 norm tends to increase when one updates λi
accordingly to expression (3) in a following section.

2Now,~x minimizes the functional
∥∥∥A~x−~b

∥∥∥2
+ ε ∑i log

[
1+ x2

i
σ2

x

]
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There is a vast list of authors that claims DLSE, with the
implied L2 minimum norm of the solution, and even the iter-
ative process of updating λi like proposed in expression (3)
are not able to promote the desired degree of sparseness.
It is very common to change the DLSE so as to achieve a
minimum L1 norm of the solution instead (see references
to the so called LASSO problem). This may be, approxi-
mately, carried out in an iterative way with a set of weights
Λi j =

√
εδi j|xi|−1. From equation (4), it can be seen that

such a choice for λi will indeed force convergence to a so-
lution that minimizes,∥∥∥A~x−~b

∥∥∥2
+ ε ∑

i
|xi| .

However, although expressions like (3) might not help find-
ing a properly sparse solution, different norms like L1 (or
any other) are prone to promote a sparse but with no phys-
ical appealing solution. An example where the mathemati-
cal property called sparseness is of no meaning would be
that of mapping a regularly sample data beyond aliasing.
In this case, two or more columns of A would be identical
and there would be no reason why sparseness would yield
one particular solution.

On the other hand, a statistical choice of λi is not the only
option. A pragmatic analysis of what a particular set of λi
leads to in an inversion problem may offer different choices.
Fast convergence may be one additional requirement to be
filled in by an alternative choice.

A brief discussion of this process and a heuristic choice for
λi is the subject of this paper.

Before going further, let’s remember and emphasize that
dumping is safe in respect to the error expressed in equa-
tion (4). It is important to notice that inadequate choices
of λi cannot be of great harm. In fact, the error expressed
by equation (4) will be small for any given set of sufficiently
small λi’s.

A geometrical view for the role of a varying λλλ

An analysis of the role different λi’s play in the choice of a
particular solution for the DLSE and in the rate of conver-
gence of the iterative process is somewhat difficult if one
looks only to equations (2) or (4). From (4) it may be seen
that smaller values of λi allows for greater values of xi and
vice versa. Expression (3) exhibit this behavior but no more
details are available. Moreover, the searched weights are
obtained in an inversion process, which, by definition, tends
to “boost small features”. An attempt to predict what the in-
version process will produce on the weights is presented
below.

For a varying set of λi, equation (1) may be rewritten as,

[
A
ΛΛΛ

]
~x = A~x =

[
~b
~0

]
. (5)

For all λi 6= 0, corresponding columns of A are linearly in-
dependent from the others, by construction. The linear in-
dependence of λi = 0 columns depends only on the rank
of the original matrix A. Then, if the rank of A is p and
the dimension of~x is n, the minimum and sufficient number
of non zero λi’s to have linear independence of columns is
n− p.

The solution~x is obtained by left multiplying (5) by the Her-
mitian of a matrix Ã that has in its columns a set of vectors
that are dual to the columns of A. It means

∑
k

Ã∗kiAk j = δi j . (6)

A dual matrix Ã always exist if at least n− 1 values of λi
is greater than zero. A dual matrix do exist if at least n− p
values of λi 6= 0, provided that a proper choice of i’s is used.

In the general case, the columns of A may not represent
a frame. That is, not all possible data vectors ~b can be
written as A~x. Let ~β be the component of ~b that can be
fully described as a linear combination of the columns of A.
Since no choice of λi may overcome this limitation, in this
case, it is only true that,

~x = ÃH (~β T ,~0T )T . (7)

Finally, we can understand the role of a particular choice of
λ ’s as follows. Consider the simplest case of a 2X3 matrix
A = (~u~v ~w) with rank 2 (see figure 1). Setting λ2 = ε for the
second column, makes the corresponding column of A to
move out of the plane spanned by the other two columns.
Since relation (6) must hold, the second column of Ã is
forced to be perpendicular to the other two columns of A.
Since ~β is a combination of these two remaining columns
of A, the weight x2 is set to zero. Extending to matrices
of higher dimensions is straightforward, if the number of
nonzero values of λi is strictly n− p, one can choose dif-
ferent solutions for the linear problem~x by simply choosing
which p columns will be assigned the zero values of λi. It
is a binary filter that establishes which weight will and will
not be zeroed out.

Apart from numerical precision limitations, this binary se-
lection will take place for very small values of λi. Thus, it
can be done with little influence to the error given in equa-
tion (4).

A choice of λi’s to match specific purposes, in a binary
form as proposed, would require an analysis of possible
clusterings of orthogonal subspaces of matrix A. Such an
analysis is of little practical interest due to inherent CPU
demands. Furthermore, this analysis itself would provide
more reliable choices of ~x than Reweighted Least Square
approaches.

There is another interesting note to be made about the ma-
trix Ã. If A is a mX n matrix and its columns forms a frame
for the space of vectors of dimension m, then the first m
lines of Ã forms also a frame that is dual to the frame in A.
Let Â be the matrix formed by the first m lines of Ã. Hence
for a frame A we must have AÂH = I.

A Boolean-like distribution of λλλ ’s

The safety in dumping and the discussion in the last sec-
tion encourages a search for a set of λi’s that could have
a Boolean-like result at the choice of the weights ~x. This
means finding the most sparse solution under a given phys-
ical constraint. The idea is to set to zero all λi’s correspond-
ing to weights xi’s to be used in the modeling. Without
a priori information or a physical constraint, the iterative
Reweighted Least Square method assumes that the model
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Figure 1: A graphical representation of three columns of A; At the
top, linearly dependent, all λi = 0. At the bottom, linearly indepen-
dent, only λ2 6= 0.

“prefer” one weight to another, in any iteration, so that the
absolute value of the weights can be used to define the set
of λ ’s to the next iteration.

In any case, one can think of a function that “flags” xi ac-
cording to its degree of rejection it has over the others in the
k− 1 iteration, αi = F (x(k−1)

i ), 0 ≤ αi ≤ 1. Then, one could
get an almost Boolean distribution of λi’s, for example, with
a heuristic relation like,

λi = ε

 αre f

(
αi

αre f

)γ

; if αi ≤ αre f

1− (1−αre f )
(

1−α

1−αre f

)γ

; if αi > αre f

, (8)

where ε, αre f , and γ were introduced to control, respec-
tively, the greatest value of λi, the value of αi to trigger the
selection, and the “degree of acceptance” to be applied.

Figure 2 have six representations of equation (8) for a hy-
pothetical distribution α = 0.5(1− cosθ); 0 ≤ θ ≤ π, where
αre f is 0.5 (50% of the values) and 0.75 (about 66% of the
values), and γ is 1, 2, and 5.

The parameter αre f is chosen as the p-th value after sort-
ing all n values of α ’s in increasing order. To know p may
require a considerable amount of CPU which would make
all of this work worthless. Fortunately, it is often possible to
estimate p under “reasonable” assumptions, and, most im-
portant, dumping is safe (small ε) so we can try and adapt.

Figure 2: Six representations of λi for ε = 1. Left: αre f = 0.5, γ is
1 (black), 2 (blue), and 5(green); Right: αre f = 0.75, γ is 1 (black),
2 (blue), and 5(green).

Synthetic Examples

A 2X3 simple problem:

A simple but clear example could be that of a 2X3 matrix
as follows,

[
1/
√

2 −1/
√

2 2/
√

5
1/
√

2 1/
√

2 1/
√

5

] x1
x2
x3

 =
[

2
1.5

]
.

In this case it is clear that the columns of the matrix forms
a frame for vectors of dimension 2. It is also clear that
the rank of the matrix is 2. Thus, the most sparse solu-
tion of the problem requires that only one λi 6= 0. Begin-
ning with the usual DLSE equation, using a constant value
for λi of 0.001, one gets ~x ≈ (1.193,−0.091,0.829)T . Using
expression (3) for λi’s, after the first iteration the solution
changes to ~x ≈ (1.299,−0.141,0.672)T and after 10 itera-
tions the solution has converged (variations smaller than
0.001) to ~x ≈ (1.402,−0.189,0.518)T . The final solution is
good up to errors of the order of λ but can be consid-
ered as not much sparse. Changes in the value of the
variance used in (3) would likely yield another final solu-
tion. Adopting a heuristic approach, using the first DLSE
solution as starting point to derive a set of λi’s (no a priori
physical constraints), after the first iteration the solution is
~x≈ (1.001,−0.0005,1.116)T . The last solution is sparse and
was obtained with just one iteration.

For this example, the heuristics was simply,

λi = ε

(
max(x)− xi

max(x)−min(x)

)γ

, (9)

with γ = 5 and ε = 0.001.

A spatially irregular f − k transform:

Another interesting example is that of obtaining the IDFT
beyond Nyquist. As pointed out in Hennenfent et al. (2007),
aliasing is not as severe for fully irregularly sampled data
as for regular ones. In their paper, sparseness is used to
allow extending the Fourier spectra beyond an estimated
Nyquist frequency. Since the “degree of regularity” is not
predictable in current applications, a technique dependent
only on sparseness may fail. As commented above, it is
not possible to achieve a sparse solution for the problem if
two or more columns of the transforming matrix are equal.

The f − k transform of linear events exhibits two distinct
zones with respect to spatial aliasing. It is well known that
linear events in the time-space (t−χ) domain transform as
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linear events in the f − k domain as well. It is also known
that spatial aliasing in linear events is related to the velocity
or dip of the event. The higher the temporal frequency f the
smaller the spatial Nyquist frequency for a given dip. This
means that, for a given dip, there is a highest temporal fre-
quency fknyq for which no spatial aliasing is observed. Most
applications of irregular f − k transforms uses this fact to
develop a strategy to handle spatial aliasing. The idea is to
compute the weights for all pairs ( f ,k), f < fknyq and, under
the linear events hypothesis, to estimate expected weights
for frequencies f ≥ fknyq. This holds for linear events only
but, borrowing properties of curvelet analysis, it is expected
to be a good approximation for locally linear events as well.

Predicting weights for higher temporal frequencies is sim-
ilar to have a priori physically acceptable constraints. The
role of a constraint here is to allow for deciding which com-
ponent of the matrix to use even when alias is severe. A
physical constraint may be incompatible with a general sta-
tistical principle. This is where a heuristic set of λi’s is
supposed to help. The tests below were made using the
heuristics discussed above (equation (8)) only.

Figure 3 has a synthetic seismogram with three linear
events in regular but gapped spatial sampling and the cor-
responding estimate of its f − k transform (constant λ , no
sparseness) with a maximum wavenumber three times the
expected Nyquist k ≤ 3knyq. The imbedded spatial regu-
larity was used to get a more difficult to handle aliasing
example.

Figure 3: A seismogram with three linear events. Regular spatial
sampling but with gaps. Above, the time-space domain; below, the
frequency-wavenumber domain up to three times Nyquist k≤ 3knyq.

Fourier periodicity and aliasing are clearly present in figure
3. The same type of configuration is found in figure 4 where
the gaps were filled without requesting sparseness. In this
case, typically Fourier “predicts” null traces in the gaps.

Figure 4: A seismogram with three linear events. Regular spatial
sampling after Fourier interpolation. No sparseness assumptions
used. Note that Fourier typically predicts null traces in the gaps.

Figure 5: A zoom of the regular but gapped seismograms before
(above) and after (middle) Fourier interpolation with sparseness
requirements but no physical constraint used. The f − k domain
(bellow) is totally similar to that shown in figure 3 with aliasing and
periodicity still observed.

Figure 5 has another regular but gapped seismogram after
interpolation requiring sparseness but still with no physical
constraint used. Now, for better appraisal of the results,
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figures are zoomed. This time gaps were filled properly but
the f − k domain still exhibits periodic events. The f − k
domain looks somewhat cleaner than that shown at figure
3 (better observed in a digital version of this paper). This is
what one would have if the original data had no gaps at all.
The problems with this estimate of the f − k domain would
be noticed if spatial resample is done.

Figure 6 shows the f − k spectrum obtained in a regular
and gapped sampling but this time the physical assumption
of linear events were used so that it is possible to discard
periodic manifestations of an event based on its behavior
for smaller temporal frequencies.

Figure 6: The f − k spectrum obtained in a regular but gapped
spatially sampled seismic section but using a physical constraint.
This constraint allows to mitigate the usual periodicity and aliasing.

The irregularity impact on the aliasing mitigation can be ob-
served at figure 7. In this case, with or without physical
constraints, results are more or less the same. The use
of a physical constraint in a spatial resampling application
is not tested here since it seems out of the scope of this
paper. We limit to remark that statistical assumptions are
not enough to guide a f − k domain estimate. A physical
constraint, with some kind of heuristics for mitigating re-
dundancy, is required.

In figures 3, 4, and 5, the first inversion was made with a
constant λi = 0.001 (DLSE). In figures 4 and 5, the DLSE
inversion was followed by 5 iterations of inversion using the
heuristic expression (8), with γ = 8, and an estimate of p/n
of 0.1. The relation between αi and the f − k weights was
like equation (9) but with γ = 1. In figures 6 and 7, the
first inversion was made with an estimate of αi from some
f −k weights of smaller frequencies, according to the linear
event hypothesis. In all synthetic examples shown above,
inversion was carried out with conjugated gradient in Scilab
software.

A spatially irregular f − k transform application in the
regularization of Real 3D Streamer Data

The application of this heuristic choice of λi’s in the regu-
larization of real seismic data brings about some issues not
discussed in details in this paper. Particularly, the 3D na-
ture and noise are important aspects that are addressed in
the regularization of real 3D shot records. Here we show a
small set of traces from a real streamer marine 3D shot. For
comparison, we selected traces that have receivers along a
3D seismic line. Before 3D regularization (figure 8), due to
feathering, the set of traces appear discontinuous. After 3D
regularization (figure 9), there is a trace for each common

Figure 7: A zoom at an irregularly sampled seismic section.
Above, before Fourier interpolation; Middle, after interpolation;
Below, the corresponding f − k spectrum. Note that periodic-
ity/aliasing is almost absent and the spectrum is quite cleaner than
that shown in figure 6.

mid point and the discontinuity disappeared.

Apart from the different amount of traces, it can be ob-
served that random and swell-like noise have been attenu-
ated as a result of the Fourier limitations from the original
to the regularized data. It can also be observed that am-
plitudes were reconstructed with a great degree of confi-
dence.

Finally, marine shot records are free of high spatial fre-
quency discontinuities generated by variations in the ve-
locity of sound in water and tidal effects. Also azimuth is
a smooth function of receiver positions. Thus, in marine
streamer surveys, the shot domain seems to be appropri-
ate for Fourier interpolation.

Summary, Comments and Conclusions

We have analyzed the role of varying dumping factors for
stabilization and definition of physically acceptable solu-
tions in linear inverse problems. A heuristic approach, inde-
pendent of statistical properties of the data and the physical
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Figure 8: Original shot. Traces colected along a 3D line. Discon-
tinuities come from feathering.

model, was proposed and applied with relative advantage
in what fidelity to the model and convergence are a con-
cern. The a priori knowledge of redundancy on specific
applications is shown to be of direct use on the definition of
an appropriate heuristic approach. Applications in seismic
regularization with the f − k transform was used.

This paper did not considered random noise because of
limitations on paper’s number of pages but, with some con-
siderations on the heuristics for defining a “degree of ac-
ceptance”, acceptable signal-to-noise ratios may be treated
as well. The real 3D data shown somehow filled this gap in
the content of the paper.
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